
0 Fermi National Accelerator Laboratory

FERMILAB-Conf-871162

User Friendly Far Front Ends*

J.R. Zagel and L. J. Chapman
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1987

*Submitted to the Europhysics Conference on Control Systems for Experimental Physics, Villars-sur-Ollon.
Switzerland, September 28-October 2, 1987

3 Operated by Universities Research Association Inc. under contract with the United States Department of Energy

USER FRIENDLY FAR PBONT ENDS

.I. tt. &gel and.L. J. Chapman
'Fermi National Accelerrtor Laboratory *

Mail Statioo~307, P.O. Box 5M)
Bstsvis, Illinois, 60.510, USA

Abstrsct

For yeari controls group hardware designers
have designed microprocessor systems to accomplish
specific functions such =s refrigeration control.
These systems often require years of softrare
effort. The backlog of requests for eve" simple
sdditions or modifications to software in embedded
controllers has become overwhelming. Ke discuss
the requirements of 'far forward" controllers. Can
re build a system that is modular s"oUga to be
configurable for specific applications without
sacrificing performance? The hardware nnd software
framework must be complete enough to isolate the
end user from the peculiarities of bit and byte
manipulation, but still allow system specifics to
be implemented by the user. It is time to provide
embedded controller systems as easy to "se =s
workstation consoles.

Iiistorical Perspective

Evolution in data collection methodology haJ
provided "ew challenges and opportunities. Only =
fen yews ago =" engineer would design = very
specific collection of logic gates ="d analog
compooents into a module capable of a single simple
function. With the advent of microprocessors and
analog function modules the far-forward data
collection point "or provides the services of what
was once the entire control system. Wbile the
hardware designer "or finds it convenient to
combine more functionality into the various modules
the hulk of the total control task h=s shifted to
the software designer.

Yost early control systems rere pure analog.
Our present day systems are pushing the
digital/analog dividing line closer to the
transducers and actuators. The digital interface
now is very much a part of the real rorld device.
Bence the control system processor must have ="
intimate knowledge of the device it controls or
monitors.

Bow do ne m=P what = computer knows
(iostructions, variables), into the controls
problem (valves, temperatures, closed loops)? And
her ouch of thst mapping should be done by system
software? Conventioaal tools provide such = paar
mapping that it is very difficult to write generic
software. The mapping is so complex, and so loose,
that the number of possibilities is enormous.
This, together with the creativity of progranmers,
result in = bewildering variety of inwmpatible
appraaches. But "er paradigms (objects and
rules) give a much cleaner mapping from the control
system to the cootrolled system, making generic
co"tro1.v software more feasible.

A classics1 soft-e problem has been: what
code should access what data? Originally any code
could =ccess sny data, which of purse mesllt that
code often accessed data incorrectly, or at last
unwisely. Common blocks helped somewhat. in =
crude w=y. Structured prcgrsmming languages

t Operated by Universities Klesa=rcb Associ=tio"
Inc., under contra-A with the US Depsrtment of
Energy.

dsmo"str=ted the ioadequzy of the structured'
=pprosch. Nor object-oriented languages, = gift
from the field of Artificial Intelligence, are
here. Objects solve the cade/d=t= orgaoieatio"
problem and =re especially relevant to controls
programming.

Conventiansl computers =re inherently
sequential BS w=s e~ly software (piano rolls,
loams) until the arrival of the GOT0 statement.
When the British invented subroutines, software
bec=me less sequential. Yultitssking made it less
sequential still, and "01 rule-based languages,
another gift from AI, are arriving, providing a
much closer match to the controls problem than more
sequential methods possibly cs-~l.

Definition

The User Friendly Far Front End (UFFTE) is the
collection of hsrdrare and software that will be
provided to sllor some useful control task at, or
close to, the controlled or monitored system. Its
task is any subset of data acquisition, conversion,
closed loop processing, and control output. One of
the q =i" goals the" is to identify the parts of the
system that are hard architecture and that c=" be
provided =s generic, standard modules. These
modules c=" be provided by the system thus freeing
the applicatioas programmer to concentrate on the
specific control task.

The hardware in the UFFFE mast certainly
includes many intelligent modules that can be
programmed for~various applications. The software
+,a initialize, opernte, and recover from fault
caaditions is a part of the module design sod must
be provided ss a package that other software CM
access. Bow to use the data is a" application
question whereas the acquisition is still specific
to the hardware involved.

Generic Resources

Bardware Objects

We have begun providing modules that accomplish
ever more complex functions. But me have fallen
into the tr=p of leaving out the software required
to access them. This coding the" becomes part of
the task of every system programmer rho typically
dces not rant to be concerned with the
peculiarities of

A ner stage
bitorad byte wznipulstio".

deslg" is required that
specificslly devotes attention to settiag up,
collecting or distributing data, and fault
reporting o" a given hsrdware module. A hardware
module together with its software is what we c=ll a
hardwsre object.

All of the hard-e present in today's control
systems c=" be loosely classified ~8 analog to
digits1 converters, digits1 to an=log converters,
digits1 input, digits1 output, controllers, and
ccmmmicators. Questions of how q ="y chunals,
rhrt speed, ="d wh=t =ccurscy or resolution give
rise to the plethora of i"st=ll=tion rari=tio"s.
This will not change in the future. Borevsr it is
possible to think in terms of providing, for
ineteace, = st="dord frst A/D, multiplexed A/T),
etc., =ll complete with the soft-a required to
access (=nd eve= filter) data, m=kiw it =v=il=ble
to the system.

1 . .

Software Objects

A software object is a little package of data
and code which accesses' its data. Other objects
cannot access this data directly; rather'they send.
messages to the object which result in the object
accessing its own data in its ow" way. ,These
messages provide a clean black box interface around
each object. No object knows more about its
neighbors than it needs to know. Code is more
strictly partitioned and therefore easier to write
sod saiatain, allowing m"re generic code.

Objects can be used for many purposes in a
control system. We have already described hardware
objects. Standard control algorithms like digital
filters and closed laops can be represented as
software objects. All these objects con send
messages representing data flow to ""e another: the
temperature sensor object gets the current
temperature, sends it to the digital filter object
which averages it rith recent temperatures and
sends the average on to the PID loop object, which
calculates a new valve position and sends it on to
the relevant valve object (see Figure 1). Thus
objects can easily and aaturally represent data
flow networks, which can easily and "aturally
represent many control problems.

0 Mrmars

0 Ylttrarr
0 z::”
- q r,,aye

- tar0 rD”“LEtlO”

=h- I
I

n
“.“7

z
““p

-=

B

om”l -
‘=- I

TNf

2 - w.

& @J**- --.j,

Figure 1. Cryogenic UFFFE

The PID loop object in this example can he
coded generically because of the clean interface
provided by messages. The loop might obtain its
inpvt value by sending 'read' messages to any
object that supports 'read" messages, and similarly
send 'set" messages to any object that is setable.
This would be difficult ta code in a conventional
language. Object-oriented programming makes it
simple to code generically.

Finite state machines provide another example.
"any control sequence problems are naturally
expressed as state machines. Objects cao easily
represent such machines, the state being remembered
by the machine object. Again this cm be done in P
very generic rsy. Also, these tro fundamental but
high-level paradigms, data flow snd state machines,
csn be combined in various lays; typically a state
machine watches over and controls a data flow
network, changing loop parameters and opening and
closing channels as the state changes. A" informal
survey "ithin the Fermilab Controls Group shored
that several control systems written in radically
different styles by various programmers boil dom
to a state machine supervising a data flow network.

2

If generic support for these paradigms had been
rvpilable, these projects could have bee" done in
much less time. Similar claims have bee" made
often in the past, but object-oriented programming
should make the claims fulfillable.

The messages objects send one mother can be
seat across communications networks. The "etrork
strudture, indeed the existence of the network
itself, is unknown to the objects, which see the
universb as a large collection of.objects able to
send messages to one another. It should therefore
be easy for a closed loop object to run entirely
within one processor, or to get its reading from
(and send its setting t") objects -in other
processors. Again this allors very generic c"de.

In rule-based programming, rules replace tasks
and subroutines. Each rule is like a tiny task,
waiting for conditions to be just right for it to
fire, executing some actions. Rules communicate
with each other via facts. When * rule's patterns
match existing facts, the rule fires, most
typically asserting new facts which may eventually
cause further rule firings.

Facts provide a clean, flexible, powerful
interface among rules. A rule whose pattern
matches a fact neither knows nor cares who
generated the fact. Conversely, * particular fact
can be of interest to any number of rules. This
'fact interface makes it possible for rules to he
very independent. Extremely generic facts sod
rules are possible.

The rule based paradigm is especially
appropriate for real time controls systems where,
as conditions change over time, various actions
should be take". Such actions ca" be coded
straightforwardly as rules. This structure seems
much closer to the controls problem thm a"y more
sequential approach.

Applicstion-Specific Besources

Generic resources are combined to create
specific applications. At this level the
application designer defines the types of loop
feedback desired, the input variables, output
variables, and possibly the frequency of updates
for the loop. The peculiarities of a particular
A/D bcird, such as multiple readings on a give"
multiplexer chaonel, are of "o concern to the
application. The applicatio" has every right to
assume that a datum is as accurate as the function
module csn provide or that the module has reported
an err"=. The designer can work in a higher level,
concentrating on the control problem.

Bardrare is available to accomplish many input
and output functians. There always seems to be
s"me requirement which ,n&ez ou;he;y vse of any
existing module. 1s "0" a
significant selection of off-the-shelf equipment
that is well defined in both hardware and software.
New apparatus ca" be designed to fit the present
interface scheme with only the additional features
added.

Vhen a new type of object is required, say a
valve with a "er parrzaeter, it need not be coded
from scratch. Siace object types are hierarchical,
it is very easy to specify that the "ew kind of
valve is just like the standard valve with one
exception. What all valves have in co-" is coded
in one pl*ce; what is unique to the new valve is
coded in one other place. This allmrs powerful,
generic system code representing what is common to
all control systems. Specific applications can
begin with the generic code z.nd add ONLY the code

necessarr to describe what is unique to that
spplicatL.

One of the chief advantages of rule-based
systems is the independence of the rules: ideally
each rule expresses a singl;= concept. Rules, and
therefore concepts, can added or removed
independently. Some rules can therefore express
very generic concepts and be part of the system:
concepts like periodicity or alarms. Other rules
can express application specific concepts like
*whenever the up-stream temperature is too high and
the ret engine is off, open the up-stream valve"
(see Figure 2). Such rules can be added easily
because rules are independent and communicate via
facts. Facts such as "temperature 7 too high" can
trigger generic rules such as "when anything is too
high, notify anyone rho cares- as rell as
y&ation specific rules like the one sketched

structure

The UFFFE could be assembled using the
components described above. The task before us is
to provide a system with a processor,
communications capability, a varied selection of
input/output capabilities, and the software wadules
to tie these components together.

An example of this process can be found in the
personal computer. Here a collection of processor,
communication, mass storage, keyboard, mouse, and
video display is assembled with at least e.n
operating system to g=t the system running.
Starting with this base a host of specialimsd
aDplicat.ions code is written to accomplish a number
o'f'rarious tasks.

generic system would accommodate any standard
networking scheme. Since the interface to UFFFE is
well specified any new networking scheme can easily
be added as the need arises.

Conclusion

The advent of new software pardigms sod modern
hardware finally make it possible to design truly
modular systems with truly generic components.
Hardware modules and their associated software are
supplied as complete objects. Clean interfaces
make it easy to add bath generic and application-
specific objects to an WFFE, which itself preseots
a clean interface to the outside world.

Beferences

[l] AllT - Automated Reasoning Tool.
Trademark of Inference Corooration.
5300 1. Century Bird., Los Angeles,
California, QCO45, USA.

An WFFE is a collection of hardware and
softrue modules to nccamplish a specific task. As
such it may require the services of e. network to
more data. mea we provide the hardware that cares
about the intricacies of signal levels and-bit
rates, we also provide the networking soft%; ;;
initialimc the hardware and move data.
true regardless of the sctual media. In time our

3

